МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Министерство образования и науки Самарской области государственное бюджетное общеобразовательное учреждение Самарской области средняя общеобразовательная школа № 1 п.г.т. Безенчук муниципального района Безенчукский Самарской области

Рассмотрено на заседании МО учителей	Согласовано Зам. директора по УВР	Утверждено Директор ГБОУ СОШ №1
естественно-научного и физико- математического цикла Руководитель МО	/ Демитриева Л.А.	/Энговатов О.А.
/ Шевырялкина Е. В. Протокол №от «»20 г.	«»20 г.	Приказ № от «»20 г. М.П.

РАБОЧАЯ ПРОГРАММА

учебного предмета «Геометрия»

для 8 класса основного общего образования на 2022-2023 учебный год

Составитель: Шевырялкина Елена Викторовна учитель математики

п. г.т. Безенчук, 2022

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

ОБЩАЯ ХАРАКТЕРИСТИКА УЧЕБНОГО К У Р С А «МАТЕМАТИКА»

Предмет «Геометрия» является разделом курса «Математика».

Рабочая программа по предмету «Геометрия» для обучающихся 8 классов разработана на основе Федерального государственного образовательного стандарта основного общего образования с учётом и современных мировых требований, предъявляемых к математическому образованию, и традиций российского образования, которые обеспечивают овладение ключевыми компетенциями, составляющими основу для непрерывного образования и целостность общекультурного, саморазвития, а также личностного познавательного развития обучающихся. В рабочей программе учтены идеи и положения Концепции развития математического образования в Российской Федерации. В эпоху цифровой трансформации всех сфер человеческой деятельности невозможно стать образованным современным человеком без базовой математической подготовки. Уже в школе математика служит опорным предметом для изучения смежных дисциплин, а после школы реальной необходимостью становится непрерывное образование, полноценной базовой общеобразовательной подготовки, в том числе и математической. Это обусловлено тем, что в наши дни растёт число профессий, связанных с непосредственным применением математики: и в сфере экономики, и в бизнесе, и в технологических областях, и даже в гуманитарных сферах. Таким образом, круг школьников, для которых математика может стать значимым предметом, расширяется.

Практическая полезность математики обусловлена тем, что её предметом являются фундаментальные структуры нашего мира: пространственные формы и количественные отношения от простейших, усваиваемых в непосредственном опыте, до достаточно сложных, необходимых для развития научных и Без конкретных математических прикладных идей. знаний затруднено понимание принципов устройства и использования современной техники, восприятие и интерпретация разнообразной социальной, экономической, информации, малоэффективна политической повседневная практическая деятельность. Каждому человеку в своей жизни приходится выполнять расчёты алгоритмы, находить применять формулы, составлять И практическими приёмами геометрических измерений и построений, читать информацию, представленную в виде таблиц, диаграмм и графиков, жить в условиях неопределённости и понимать вероятностный характер случайных событий.

Одновременно с расширением сфер применения математики в современном обществе всё более важным становится математический стиль мышления, проявляющийся в определённых умственных навыках. В процессе изучения математики в арсенал приёмов и методов мышления человека естественным образом включаются индукция и дедукция, обобщение и конкре тизация, анализ и синтез, классификация и систематизация, абстрагирование и аналогия. Объекты математических умоза ключений, правила их конструирования раскрывают механизм логических построений, способствуют выработке умения формулировать,

обосновывать и доказывать суждения, тем самым развивают логическое мышление. Ведущая роль принадлежит математике и в формировании алгоритмической компоненты мышления и воспитании умений действовать по заданным алгоритмам, совершенствовать известные и конструировать новые. В процессе решения задач — основой учебной деятельности на уроках математики — развиваются также творческая и прикладная стороны мышления.

Обучение математике даёт возможность развивать у обучающихся точную, рациональную и информативную речь, умение отбирать наиболее подходящие языковые, символические, графические средства для выражения суждений и наглядного ихпредставления.

Необходимым компонентом общей культуры в современном толковании является общее знакомство с методами познания действительности, представление о предмете и методах математики, их отличий от методов других естественных и гуманитарных наук, об особенностях применения математики для решения научных и прикладных задач. Таким образом, математическое образование вносит свой вклад в формирование общейкультуры человека.

Изучение математики также способствует эстетическому воспитанию человека, пониманию красоты и изящества математических рассуждений, восприятию геометрических форм, усвоению идеи симметрии.

ЦЕЛИ ИЗУЧЕНИЯ УЧЕБНОГО КУРСА «ГЕОМЕТРИЯ»

«Математику уже затем учить надо, что она ум в порядок приводит», — писал великий русский ученый Михаил Васильевич Ломоносов. И в этом состоит одна из двух целей обучения геометрии как составной части математики в школе. Этой цели соответствует доказательная линия преподавания геометрии. Следуя представленной рабочей программе, начиная с седьмого класса на уроках геометрии обучающийся учится проводить доказательные рассуждения, строить логические умозаключения, доказывать истинные утверждения и строить контрпримеры к ложным, проводить рассуждения от «противного», отличать свойства от признаков, формулировать обратные утверждения. Ученик, овладевший искусством рассуждать, будет применять его и в окружающей жизни.

Как писал геометр и педагог Игорь Федорович Шарыгин, «людьми, понимающими, что такое доказательство, трудно и даже невозможно манипулировать». И в этом состоит важное воспитательное значение изучения геометрии, присущее именно отечественной математической школе. Вместе с тем авторы программы предостерегают учителя от излишнего формализма, особенно в отношении начал и оснований геометрии. Французский математик Жан Дьедонне по этому поводу высказался так: «Что касается деликатной проблемы введения «аксиом», то мне кажется, что на первых порах нужно вообще избегать произносить само это слово. С другой же стороны, не следует упускать ни одной возможности давать примеры логических заключений, которые куда в большей мере, чем идея аксиом, являются истинными и единственными двигателями математического мышления».

Второй целью изучения геометрии является использование её как инструмента при решении как математических, так и практических задач, встречающихся в реальной жизни. Окончивший курс геометрии школьник должен быть в состоянии определить геометрическую фигуру, описать словами

данный чертёж или рисунок, найти площадь земельного участка, рассчитать необходимую длину оптоволоконного кабеля или требуемые размеры гаража для автомобиля. Этому соответствует вторая, вычислительная линия в изучении геометрии в школе. Данная практическая линия является не менее важной, чем первая. Еще Платон предписывал, чтобы «граждане Прекрасного города ни в коем случае не оставляли геометрию, ведь немаловажно даже побочное её применение — в военном деле да, впрочем, и во всех науках — для лучшего их усвоения: мы ведь знаем, какая бесконечная разница существует между человеком причастным к геометрии и непричастным». Для этого учителю рекомендуется подбирать задачи практического характера для рассматриваемых тем, учить детей строить математические модели реальных жизненных ситуаций, проводить вычисления и оценивать адекватность полученного результата. Крайне важно подчеркивать связи геометрии с другими предметами, мотивировать использовать определения геометрических фигур и понятий, демонстрировать применение полученных умений в физике и технике. Эти связи наиболее ярко видны в темах «Векторы», «Тригонометрические соотношения», «Метод координат» и «Теорема Пифагора».

МЕСТО УЧЕБНОГО КУРСА В УЧЕБНОМ ПЛАНЕ

Согласно учебному плану в 8 классе изучается учебный курс «Геометрия», который включает следующие основные разделы содержания: «Геометрические фигуры и их свойства», «Измерение геометрических величин».

Учебный план предусматривает изучение геометрии на базовом уровне, исходя из 68 учебных часов в учебном году.

СОДЕРЖАНИЕ УЧЕБНОГО КУРСА «ГЕОМЕТРИЯ»

Четырёхугольники. Параллелограмм, его признаки и свойства. Частные случаи параллелограммов (прямоугольник, ромб, квадрат), их признаки и свойства. Трапеция, равнобокая трапеция, её свойства и признаки. Прямоугольная трапеция.

Метод удвоения медианы. Центральная симметрия. Теорема Фалеса и теорема о пропорциональных отрезках.

Средние линии треугольника и трапеции. Центр масс треугольника.

Подобие треугольников, коэффициент подобия. Признаки подобия треугольников. Применение подобия при решении практических задач.

Свойства площадей геометрических фигур. Формулы для площади треугольника, параллелограмма, ромба и трапеции. Отношение площадей подобных фигур.

Вычисление площадей треугольников и многоугольников на клетчатой бумаге.

Теорема Пифагора. Применение теоремы Пифагора при решении практических задач.

Синус, косинус, тангенс острого угла прямоугольного треугольника. Основное тригонометрическое тождество. Тригонометрические функции углов в 30°, 45° и 60°.

Вписанные и центральные углы, угол между касательной и хордой. Углы между хордами и секущими. Вписанные и описанные четырёхугольники. Взаимное расположение двух окружностей. Касание окружностей. Общие касательные к двум окружностям.

ПЛАНИРУЕМЫЕ ОБРАЗОВАТЕЛЬНЫЕ РЕЗУЛЬТАТЫ

Освоение учебного предмета «Геометрия» должно обеспечивать достижение на уровне основного общего образования следующих личностных, метапредметных и предметных образовательных результатов:

ЛИЧНОСТНЫЕ РЕЗУЛЬТАТЫ

Личностные результаты освоения программы учебного предмета «Геометрия» характеризуются:

Патриотическое воспитание:

проявлением интереса к прошлому и настоящему российской математики, ценностным отношением к достижениям российских математиков и российской математической школы, к использованию этих достижений в других науках и прикладных сферах.

Гражданское и духовно-нравственное воспитание:

готовностью к выполнению обязанностей гражданина и реализации его прав, представлением о математических основах функционирования различных структур, явлений, процедур гражданского общества (выборы, опросы и пр.);

готовностью к обсуждению этических проблем, связанных с практическим применением достижений науки, осознанием важности морально-этических принципов в деятельности учёного.

Трудовое воспитание:

установкой на активное участие в решении практических задач математической направленности, осознанием важности математического образования на протяжении всей жизни для успешной профессиональной деятельности и развитием необходимых умений; осознанным выбором и построением индивидуальной траектории образования и жизненных планов с учётом личных интересов и общественных потребностей.

Эстетическое воспитание:

Способностью к эмоциональному и эстетическому восприятию математических объектов, задач, решений, рассуждений; умению видеть математические закономерности в искусстве.

Ценности научного познания:

ориентацией в деятельности на современную систему научных представлений об основных закономерностях развития человека, природы и общества, пониманием математической науки как сферы человеческой деятельности, этапов её развития и значимости для развития цивилизации; овладением языком математики и математической культурой как средством познания мира; овладением простейшими навыками исследовательской деятельности.

Физическое воспитание, формирование культуры здоровья и эмоционального благополучия:

готовностью применять математические знания в интересах своего здоровья, ведения здорового образа жизни (здоровое питание, сбалансированный режим занятий и отдыха,

регулярная физическая активность); сформированностью навыка рефлексии, признанием своего права на ошибку и такого же права другого человека.

Экологическое воспитание:

ориентацией на применение математических знаний для решения задач в области сохранности окружающей среды, планирования поступков и оценки их возможных последствий для окружающей среды; осознанием глобального характера экологических проблем и путей их решения.

Личностные результаты, обеспечивающие адаптацию обучающегося к изменяющимся условиям социальной и природной среды:

готовностью к действиям в условиях неопределённости, повышению уровня своей компетентности через практическую деятельность, в том числе умение учиться у других людей, приобретать в совместной деятельности новые знания, навыкии компетенции из опыта других;

необходимостью в формировании новых знаний, в том числе формулировать идеи, понятия, гипотезы об объектах и явлениях, в том числе ранее неизвестных, осознавать дефициты собственных знанийи компетентностей, планировать своё развитие;

способностью осознавать стрессовую ситуацию, воспринимать стрессовую ситуацию как вызов, требующий контрмер, корректировать принимаемые решения и действия, формулировать и оценивать риски и последствия, формировать опыт.

МЕТАПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

Метапредметные результаты освоения программы учебного предмета «Математика» характеризуются овладением универсальными познавательными действиями, универсальными коммуникативными действиями и универсальными регулятивными действиями.

1) Универсальные **познавательные** действия обеспечивают формирование базовых когнитивных процессов обучающихся (освоение методов познания окружающего мира; применение логических, исследовательских операций, умений работать с информацией).

Базовые логические действия:

- выявлять и характеризовать существенные признаки математических объектов, понятий, отношений между понятиями;
- формулировать определения понятий; устанавливать существенный признак классификации, основания для обобщения и сравнения, критерии проводимого анализа;
- воспринимать, формулировать и преобразовывать суждения: утвердительные и отрицательные, единичные, частные и общие;
- условные; выявлять математические закономерности, взаимосвязи и противоречия в фактах, данных, наблюдениях и утверждениях;
- предлагать критерии для выявления закономерностей и противоречий;
- делать выводы с использованием законов логики, дедуктивных и индуктивных умозаключений, умозаключений по аналогии;

- разбирать доказательства математических утверждений (прямые и от противного),
 проводить самостоятельно несложные доказательства математических фактов,
 выстраивать аргументацию, приводить примеры и контрпримеры;
- обосновывать собственные рассуждения; выбирать способ решения учебной задачи (сравнивать несколько вариантов решения, выбирать наиболее подходящий с учётом самостоятельно выделенных критериев).

Базовые исследовательские действия:

- использовать вопросы как исследовательский инструмент познания;
- формулировать вопросы, фиксирующие противоречие, проблему, самостоятельно устанавливать искомое и данное, формировать гипотезу,
- аргументировать свою позицию, мнение;
- проводить по самостоятельно составленному плану несложный эксперимент, небольшое исследование по установлению особенностей математического объекта, зависимостей объектов между собой;
- самостоятельно формулировать обобщения и выводы по результатам проведённого наблюдения, исследования, оценивать достоверность полученных результатов, выводов и обобщений; прогнозировать возможное развитие процесса, а также выдвигать предположения о его развитии в новых условиях.

Работа с информацией:

- выявлять недостаточность и избыточность информации, данных, необходимых для решения задачи;
- выбирать, анализировать, систематизировать и интерпретировать информацию различных видов и форм представления;
- выбирать форму представления информации и иллюстрировать решаемые задачи схемами, диаграммами, иной графикой и их комбинациями;
- оценивать надёжность информации по критериям, предложенным учителем или сформулированным самостоятельно.
- 2) Универсальные **коммуникативные** действия обеспечивают сформированность социальных навыков обучающихся.

Общение:

- Воспринимать и формулировать суждения в соответствии с условиями и целями общения;
- ясно, точно, грамотно выражать свою точку зрения в устных и письменных текстах, давать пояснения по ходу решения задачи, комментировать полученный результат; в ходе обсуждения задавать вопросы по существу обсуждаемой темы, проблемы, решаемой задачи, высказывать идеи, нацеленные на поиск решения;
- сопоставлять свои суждения с суждениями других участников диалога, обнаруживать различие и сходство позиций;
- в корректной форме формулировать разногласия, свои возражения;
- представлять результаты решения задачи, эксперимента, исследования, проекта;

— самостоятельно выбирать формат выступления с учётом задач презентации и особенностей аудитории.

Сотрудничество:

- понимать и использовать преимущества командной и индивидуальной работы при решении учебных математических задач;
- принимать цель совместной деятельности, планировать организацию совместной работы, распределять виды работ, договариваться, обсуждать процесс и результат работы;
- обобщать мнения нескольких людей; участвовать в групповых формах работы (обсуждения, обмен мнениями, мозговые штурмы и др.);
- выполнять свою часть работы и координировать свои действия с другими членами команды;
- оценивать качество своего вклада в общий продукт по критериям, сформулированным участниками взаимодействия.
- 3) Универсальные регулятивные действия обеспечивают формирование смысловых установок и жизненных навыков личности.

Самоорганизация:

— Самостоятельно составлять план, алгоритм решения задачи (или его часть), выбирать способ решения с учётом имеющихся ресурсов и собственных возможностей, аргументировать и корректировать варианты решений с учётом новой информации.

Самоконтроль:

- владеть способами самопроверки, самоконтроля процесса и результата решения математической задачи;
- предвидеть трудности, которые могут возникнуть при решении задачи, вносить коррективы в деятельность на основе новых обстоятельств, найденных ошибок, выявленных трудностей;
- оценивать соответствие результата деятельности поставленной цели и условиям, объяснять причины достижения или недостижения цели, находить ошибку, давать оценку приобретённому опыту.

ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

Освоение учебного курса «Геометрия» на уровне 8 класса должно обеспечивать достижение следующих предметных образовательных результатов:

- Распознавать основные виды четырёхугольников, их элементы, пользоваться их свойствами при решении геометрических задач.
- Применять свойства точки пересечения медиан треугольника (центра масс) в решении задач.

- Владеть понятием средней линии треугольника и трапеции, применять их свойства при решении геометрических задач. Пользоваться теоремой Фалеса и теоремой о пропорциональных отрезках, применять их для решения практических задач.
- Применять признаки подобия треугольников в решении геометрических задач.
- Пользоваться теоремой Пифагора для решения геометрических и практических задач. Строить математическую модель в практических задачах, самостоятельно делать чертёж и находить соответствующие длины.
- Владеть понятиями синуса, косинуса и тангенса острого угла прямоугольного треугольника. Пользоваться этими понятиями для решения практических задач.
- Вычислять (различными способами) площадь треугольника и площади многоугольных фигур (пользуясь, где необходимо, калькулятором). Применять полученные умения в практических задачах.
- Владеть понятиями вписанного и центрального угла, использовать теоремы о вписанных углах, углах между хордами (секущими) и угле между касательной и хордой при решении геометрических задач.
- Владеть понятием описанного четырёхугольника, применять свойства описанного четырёхугольника при решении задач.
- Применять полученные знания на практике строить математические модели для задач реальной жизни и проводить соответствующие вычисления с применением подобия и тригонометрии (пользуясь, где необходимо, калькулятором).

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

Тема	Программное	Основные виды деятельности	Электронные
			(цифровые)
раздела,	содержание	учащихся	, ,
курса			образовательные
		***	ресурсы
Четырёх	Параллелограмм,	Изображать и находить на	https://resh.edu.ru/
угольни	его признаки и	чертежах четырёхугольники разных	
ки	свойства.	видов и их элементы.	https://www.yaklass.r
(12 ч)	Частные случаи	Формулировать определения:	<u>u/</u>
	параллелограммо	параллелограмма, прямоугольника,	
	В	ромба, квадрата, трапеции,	http://www.bymath.n
	(прямоугольник,	равнобокой трапеции,	<u>et/</u>
	ромб, квадрат), их	прямоугольной трапеции.	
	признаки и	Доказывать и использовать при	http://school-
	свойства.	решении задач признаки и свойства:	collection.edu.ru
	Трапеция.	параллелограмма, прямоугольника,	
	Равнобокая и	ромба, квадрата, трапеции,	
	прямоугольная	равнобокой трапеции,	
	трапеции.	прямоугольной трапеции.	
	Удвоение	Применять метод удвоения	
	медианы.	медианы треугольника.	
	Центральная	Использовать цифровые ресурсы	
	симметрия	для исследования свойств	
		изучаемых фигур.	
		Знакомиться с историей развития	
Tr	Т	геометрии	1.44
Теорема	Теорема Фалеса и	Проводить построения с помощью	https://resh.edu.ru/
Фалеса	теорема о	циркуля и линейки с использование	1 //
И	пропорциональны	теоремы Фалеса и теоремы о	https://www.yaklass.r
теорема	х отрезках. Средняя линия	пропорциональных отрезках,	<u>u/</u>
0	-	строить четвёртый пропорциональный отрезок.	1 // 1 .1
пропорц	треугольника. Трапеция, её	Проводить доказательство того,	http://www.bymath.n
иональн	средняя линия.	что медианы треугольника	<u>et/</u>
ых отрезках	Пропорциональны	пересекаются в одной точке, и	
, подоб-		находить связь с центром масс,	http://school-
, подоо-	е отрезки, построение	находить связь с центром масс, находить отношение, в котором	collection.edu.ru
треуголь	четвёртого	медианы делятся точкой их	
ники	пропорциональног	пересечения.	
(15 ч)	о отрезка.	Находить подобные треугольники	
	Свойства центра	на готовых чертежах с указанием	
	масс в	соответствующих признаков	
	треугольнике.	подобия.	
	Подобные	Решать задачи на подобные	
	треугольники. Три	треугольники с помощью	
	признака подобия	самостоятельного построения	
	треугольников.	чертежей и нахождения подобных	
	Практическое	треугольников.	
	применение	Проводить доказательства с	
	применение	проводить доказательства с	

использованиемпризнаков подобия. Доказывать три признака подобия треугольников. Применять полученные знания при решении геометрических и	
треугольников. Применять полученные знания	
при решении геометрических и	
практических задач.	
Знакомиться с историей развития	
геометрии	
Площад Понятие об общей Овладевать первичными https://resh.edu.ru/	
ь. теории площади. представлениями об общей теории	
Нахожде Формулы для площади (меры), формулировать https://www.yaklas	s.r
ние площади свойства площади, выяснять их $\underline{\mathbf{u}}$	
площаде треугольника, наглядный смысл.	
й параллелограмма. Выводить формулы площади http://www.bymath	<u>.n</u>
треуголь Отношение параллелограмма, треугольника, ет/	
ников площадей трапеции из формулы площади	
и треугольников с прямоугольника (квадрата). http://school-collection.edu.ru	
многоуг ольных основанием или Выводить формулы площади выпуклого четырёхугольника через сollection.edu.ru	
фигур. общей высотой. диагонали и угол между ними.	
Площад Вычисление Находить площади фигур,	
и площадей изображённых на клетчатой	
подобны сложных фигур бумаге, использовать разбиение	
х фигур через разбиение на на части и достроение.	
(14 ч) части и Разбирать примеры использования	
достроение. вспомогательной площади для	
Площади фигур решения геометрических задач.	
на клетчатой Находить площади подобных	
бумаге. фигур. Вычислять площади	
Площади различных многоугольных фигур.	
подобных фигур. Решать задачи на площадь с	
Вычисление практическим содержанием	
площадей. Задачи	
с практическим содержанием.	
Решение задач с	
помощью метода	
вспомогательной	
площади	
Теорема Теорема Доказывать теорему Пифагора, https://resh.edu.ru/	
Пифагор Пифагора, её использовать	
аи доказательство и её в практических вычислениях. https://www.yaklas	s.r
начала применение. Формулировать определения и/	
тригоно Обратная теорема тригонометрических функций	
метрии Пифагора. острого угла, проверять их http://www.bymath	<u>.n</u>
(10 ч) Определение корректность.	
тригонометрическ Выводить тригонометрические	
ихфункций соотношения впрямоугольном http://school-	
острого угла, треугольнике. <u>Исследовать</u> соотношения между	
ие соотношения в сторонами в прямоугольных	
прямоугольном треугольниках с углами в 45° и 45°;	
треугольнике. 30° и 60°.	
Основное Использовать формулы приведения	
тригонометрическ и основное тригонометрическое	
ое тождество. Тождество для нахождения	
Соотношения соотношений между	

	между сторонами	тригонометрическими функциями				
	впрямоугольных	различных острых углов.				
	треугольниках с	Применять полученные знания и				
	углами в 45° и	умения прирешении				
	45°; 30° и 60°	практических задач.				
		Знакомиться с историей развития				
		геометрии				
Углы в	Вписанные и	Формулировать основные	https://resh.edu.ru/			
окружно	центральные	определения, связанные с углами в				
сти.	углы,	круге (вписанный угол, цен-	https://www.yaklass.r			
Вписанн	угол между	тральный угол).	<u>u/</u>			
ые	касательной и	Находить вписанные углы,				
И	хордой.	опирающиеся на одну дугу,	http://www.bymath.n			
описанн	Углы между	вычислять углы с помощью	et/			
ые	хордами и	теоремы о	_			
четырех	секущими.	вписанных углах, теоремы о	http://school-			
угольни	Вписанные и	вписанном четрёхугольнике,	collection.edu.ru			
ки.	описанные	теоремы о центральном угле.	<u>concentionreduitu</u>			
Касател	четырёх-	Исследовать, в том числе с				
ьные	угольники, их	помощью цифровых				
К	признаки и	ресурсов, вписанные и описанные				
окружно	свойства.	четырёх-				
сти.	Применение этих	угольники, выводить их свойства				
Касание	свойств	и признаки.				
окружно	при решении	Использовать эти свойства и				
стей	геометрических	признаки при решении задач				
(13 ч)	задач. Взаимное					
	расположение					
	двух					
	окружностей.					
	Касание					
	окружностей					
Повторе	Повторение	Решать задачи на повторение,	https://resh.edu.ru/			
ние,	основных	иллюстрирущие связи между				
обобщен	понятий и	различными частями курса	https://www.yaklass.r			
ие	методов курсов 7		$\frac{\overline{u}}{u}$			
знаний	и 8 классов,					
(4 ч)	обобщение знаний		http://www.bymath.n			
			et/			
			_			
			http://school-			
			collection.edu.ru			
Всего за год						
(68 ч)						